보호되어 있는 글입니다.
수학/선형대수학

Positive Semidefinite Matrices :: 양의 준정부호 행렬 모든 x에 대해 x’Ax ≥ 0일 때 n*n matrix A는 positive definite이다. 동치조건 sysmetric matrix A에 대해 다음 중 하나의 조건이라도 만족하면 모든 조건을 만족한다. all n eigenvalues 가 음수가 아니다. 모든 x에 대해 x’Ax ≥ 0 주의. n*n 대칭행렬 A가 nonnegative upper left determinant를 가지고 있다고 해서 A는 positive semidefinete라고 단정 지을 수 없다.

Positive Definite Matrices :: 양의 정부호 행렬 eigenvalue의 부호는 매우 중요하다. 따라서 Positive(Negative) Definite로 eigenvalue 부호 파악할 수 있다. 정의 Positive Definite Matrices n*n square matrix A에 대해 모든 nonzero vector x에 대해 x’Ax > 0를 성립한다면 A는 Positive Definite이다. Negative Definite Matrices n*n square matrix A에 대해 모든 nonzero vector x에 대해 x’Ax < 0를 성립한다면 A는 Negative Definite이다. EX. Symmetric positive Definite Matrices ::..

Symmetric Matrices :: 대칭 행렬 실수 대칭 행렬은 다음과 같은 성질을 가지고 있음. 성질 eigenvalue가 실수이다. orthogonal한 eigenvector를 가진다. Spectral Theorem :: 스펙트럼 정리 모든 symmetric matrix A는 A = QΛQ’으로 diagonalizable하다. Q : orthonormal eigenvector의 행렬 Λ : 실수 eigenvalue 즉, 다음의 성질을 만족한다. 성질 1 : 실수 symmetric matrix는 실수 eigenvalue를 가진다. 성질 2 : 실수 symmetric matrix는 orthogonal eigenvector를 가진다. 성질 1 증명 더보기 들어가기에 앞서. Conjugate Transp..

Diagonalization :: 대각화 n*n mattix A가 eigenvalues λ₁, λ₂, …, λₙ 을 가지고 있고, 서로 독립된 eigenvector x₁, x₂, …, xₙ 을 가지고 있다고 가정하자. ((λᵢ, xᵢ)는 eigenpair) S = [x₁ x₂ … xₙ], Λ = diag(λ₁, λ₂, …, λₙ)라 하면 S⁻¹AS = Λ 증명. AS = A[x₁ x₂ … xₙ] = [A*x₁ A*x₂ … A*xₙ] = [λ₁*x₁ λ₂*x₂ … λₙ*xₙ] = SΛ Difference Equation :: 등차 방정식 일반적으로 uₖ₊₁ = A*uₖ는 다음의 단계로 풀 수 있다. A의 독립 eigenvector로 이루어진 matrix S를 찾는다. C = S⁻¹*u₀을 만족하는 C를 찾..

Diagonalization :: 대각화 n*n mattix A가 eigenvalues λ₁, λ₂, …, λₙ 을 가지고 있고, 서로 독립된 eigenvector x₁, x₂, …, xₙ 을 가지고 있다고 가정하자. ((λᵢ, xᵢ)는 eigenpair) S = [x₁ x₂ … xₙ], Λ = diag(λ₁, λ₂, …, λₙ)라 하면 S⁻¹AS = Λ 증명. AS = A[x₁ x₂ … xₙ] = [A*x₁ A*x₂ … A*xₙ] = [λ₁*x₁ λ₂*x₂ … λₙ*xₙ] = SΛ Diagonalizale :: 대각가능성 n*n mattix에 대해 n개의 독립적인 eigenvector를 가지고 있어야 함 ↔ diagonalizable n개의 다른 eigenvalue를 갖는다면 n개의 독립된 eigenv..